25 research outputs found

    On the detection of custom memory allocators in C binaries

    Full text link

    The age of data: pinpointing guilty bytes in polymorphic buffer overflows on heap or stack

    Get PDF
    Heap and stack buffer overflows are still among the most common attack vectors in intrusion attempts. In this paper, we ask a simple question that is surprisingly difficult to answer: which bytes contributed to the overflow? By careful observation of all scenarios that may occur in overflows, we identified the information that needs to be tracked to pinpoint the offending bytes. There are many reasons why this is a hard problem. For instance, by the time an overflow is detected some of the bytes may already have been overwritten, creating gaps. Additionally, it is hard to tell the offending bytes apart from unrelated network data. In our solution, we tag data from the network with an age stamp whenever it is written to a buffer. Doing so allows us to distinguish between different bytes and ignore gaps, and provide precise analysis of the offending bytes. By tracing these bytes to protocol fields, we obtain accurate signatures that cater to polymorphic attacks

    MemPick: A tool for data structure detection

    No full text
    Most current techniques for data structure reverse engineering are limited to low-level programing constructs, such as individual variables or structs. In practice, pointer networks connect some of these constructs, to form higher level entities like lists and trees. The lack of information about the pointer network limits our ability to efficiently perform forensics and reverse engineering. To fill this gap, we propose MemPick, a tool that detects and classifies high-level data structures used in stripped C/C++ binaries. By analyzing the evolution of the heap during program execution, it identifies and classifies the most commonly used data structures, such as singly-or doubly-linked lists, many types of trees (e.g., AVL, red-black trees, B-trees), and graphs. We evaluated MemPick on a wide variety of popular libraries and real world applications with great success

    Minemu: The World’s Fastest Taint Tracker

    No full text
    Abstract. Dynamic taint analysis is a powerful technique to detect memory corruption attacks. However, with typical overheads of an order of magnitude, current implementations are not suitable for most production systems. The research question we address in this paper is whether the slow-down is a fundamental speed barrier, or an artifact of bolting information flow tracking on emulators really not designed for it? In other words, we designed a new type of emulator from scratch with the goal of removing superfluous instructions to propagate taint. The results are very promising. The emulator, known as Minemu, incurs a slowdown of 1.5x-3x for real and complex applications and 2.4 for SPEC INT2006, while tracking taint at byte level granularity. Minemu’s performance is significantly better than that of existing systems, despite the fact that we have not applied some of their optimizations yet. We believe that the new design may be suitable for certain classes of applications in production systems.

    MemBrush: A practical tool to detect custom memory allocators in C binaries

    No full text
    Many reversing techniques for data structures rely on the knowledge of memory allocation routines. Typically, they interpose on the system's malloc and free functions, and track each chunk of memory thus allocated as a data structure. However, many performance-critical applications implement their own custom memory allocators. As a result, current binary analysis techniques for tracking data structures fail on such binaries. We present MemBrush, a new tool to detect memory allocation and deallocation functions in stripped binaries with high accuracy. We evaluated the technique on a large number of real world applications that use custom memory allocators. © 2013 IEEE

    Argos: An Emulator for Fingerprinting Zero-Day Attacks for advertised honeypots with automatic signature generation

    No full text
    © 2006 Authors.As modern operating systems and software become larger and more complex, they are more likely to contain bugs, which may allow attackers to gain illegitimate access. A fast and reliable mechanism to discern and generate vaccines for such attacks is vital for the successful protection of networks and systems. In this paper we present Argos, a containment environment for worms as well as human orchestrated attacks. Argos is built upon a fast x86 emulator which tracks network data throughout execution to identify their invalid use as jump targets, function addresses, instructions, etc. Furthermore, system call policies disallow the use of network data as arguments to certain calls. When an attack is detected, we perform 'intelligent' process-or kernel-Aware logging of the corresponding emulator state for further offline processing. In addition, our own forensics shellcode is injected, replacing the malevolent shellcode, to gather information about the attacked process. By correlating the data logged by the emulator with the data collected from the network, we are able to generate accurate network intrusion detection signatures for the exploits that are immune to payload mutations. The entire process can be automated and has few if any false positives, thus rapid global scale deployment of the signatures is possible
    corecore